首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A machine learning approach for single cell interphase cell cycle staging
  • 本地全文:下载
  • 作者:Hemaxi Narotamo ; Maria Sofia Fernandes ; Ana Margarida Moreira
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-98489-5
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:The cell nucleus is a tightly regulated organelle and its architectural structure is dynamically orchestrated to maintain normal cell function. Indeed, fluctuations in nuclear size and shape are known to occur during the cell cycle and alterations in nuclear morphology are also hallmarks of many diseases including cancer. Regrettably, automated reliable tools for cell cycle staging at single cell level using in situ images are still limited. It is therefore urgent to establish accurate strategies combining bioimaging with high-content image analysis for a bona fide classification. In this study we developed a supervised machine learning method for interphase cell cycle staging of individual adherent cells using in situ fluorescence images of nuclei stained with DAPI. A Support Vector Machine (SVM) classifier operated over normalized nuclear features using more than 3500 DAPI stained nuclei. Molecular ground truth labels were obtained by automatic image processing using fluorescent ubiquitination-based cell cycle indicator (Fucci) technology. An average F1-Score of 87.7% was achieved with this framework. Furthermore, the method was validated on distinct cell types reaching recall values higher than 89%. Our method is a robust approach to identify cells in G 1 or S/G 2 at the individual level, with implications in research and clinical applications.
国家哲学社会科学文献中心版权所有