首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:CHRONO and DEC1/DEC2 compensate for lack of CRY1/CRY2 in expression of coherent circadian rhythm but not in generation of circadian oscillation in the neonatal mouse SCN
  • 本地全文:下载
  • 作者:Daisuke Ono ; Ken-ichi Honma ; Christoph Schmal
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-98532-5
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Clock genes Cry1 and Cry2, inhibitory components of core molecular feedback loop, are regarded as critical molecules for the circadian rhythm generation in mammals. A double knockout of Cry1 and Cry2 abolishes the circadian behavioral rhythm in adult mice under constant darkness. However, robust circadian rhythms in PER2::LUC expression are detected in the cultured suprachiasmatic nucleus (SCN) of Cry1/ Cry2 deficient neonatal mice and restored in adult SCN by co-culture with wild-type neonatal SCN. These findings led us to postulate the compensatory molecule(s) for Cry1/Cry2 deficiency in circadian rhythm generation. We examined the roles of Chrono and Dec1/Dec2 proteins, the suppressors of Per(s) transcription similar to CRY(s). Unexpectedly, knockout of Chrono or Dec1/ Dec2 in the Cry1/ Cry2 deficient mice did not abolish but decoupled the coherent circadian rhythm into three different periodicities or significantly shortened the circadian period in neonatal SCN. DNA microarray analysis for the SCN of Cry1/ Cry2 deficient mice revealed substantial increases in Per(s), Chrono and Dec(s) expression, indicating disinhibition of the transactivation by BMAL1/CLOCK. Here, we conclude that Chrono and Dec1/ Dec2 do not compensate for absence of CRY1/CRY2 in the circadian rhythm generation but contribute to the coherent circadian rhythm expression in the neonatal mouse SCN most likely through integration of cellular circadian rhythms.
国家哲学社会科学文献中心版权所有