首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:A Fusion-Based Machine Learning Approach for the Prediction of the Onset of Diabetes
  • 本地全文:下载
  • 作者:Muhammad Waqas Nadeem ; Hock Guan Goh ; Vasaki Ponnusamy
  • 期刊名称:Healthcare
  • 电子版ISSN:2227-9032
  • 出版年度:2021
  • 卷号:9
  • 期号:10
  • DOI:10.3390/healthcare9101393
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:A growing portfolio of research has been reported on the use of machine learning-based architectures and models in the domain of healthcare. The development of data-driven applications and services for the diagnosis and classification of key illness conditions is challenging owing to issues of low volume, low-quality contextual data for the training, and validation of algorithms, which, in turn, compromises the accuracy of the resultant models. Here, a fusion machine learning approach is presented reporting an improvement in the accuracy of the identification of diabetes and the prediction of the onset of critical events for patients with diabetes (PwD). Globally, the cost of treating diabetes, a prevalent chronic illness condition characterized by high levels of sugar in the bloodstream over long periods, is placing severe demands on health providers and the proposed solution has the potential to support an increase in the rates of survival of PwD through informing on the optimum treatment on an individual patient basis. At the core of the proposed architecture is a fusion of machine learning classifiers (Support Vector Machine and Artificial Neural Network). Results indicate a classification accuracy of 94.67%, exceeding the performance of reported machine learning models for diabetes by ~1.8% over the best reported to date.
  • 关键词:endiabetes prediction;machine learning;support vector machines;artificial neural networks;data fusion;healthcare applications;intelligent system
国家哲学社会科学文献中心版权所有