摘要:Mapping the spatial distribution of a plant is a current challenge in ecology. Here, a convolutional neural network (CNN) and 33,798 Sentinel-2 satellite images were used to detect and map forest stands dominated by trees of the genus
Pleroma by their magenta-to-deep-purple blossoms in the entire Brazilian Atlantic Forest domain, from June 2016 to July 2020. The
Pleroma genus, known for its pioneer behaviour, was detected in an area representing 10.8% of the Atlantic Forest, associated negatively with temperature and positively with elevation, slope, tree cover and precipitation. The detection of another genus by the model, 18% of all the detections contained only pink blooming
Handroanthus trees, highlighted that botanical identification from space must be taken with caution, particularly outside the known distribution range of the species. The
Pleroma blossom seasonality occurred over a period of ~5–6 months centered on the March equinox and populations with distinct blossom timings were found. Our results indicate that in the Atlantic Forest, the remaining natural forest is less diverse than expected but is at least recovering from degradation. Our study suggests a method to produce ecological-domain scale maps of tree genera and species based on their blossoms that could be used for tree studies and biodiversity assessments.