期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:37
DOI:10.1073/pnas.2108006118
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Ligand-gated ion channels are membrane proteins that cycle rapidly between open and closed forms, a process called gating. The structural basis of gating is foundational to receptor biophysics, cellular physiology, and drug design; however, it remains unclear how experimental X-ray structures correspond to solution behavior. Here, we test the solution structure of a model ion channel, GLIC, based on small-angle neutron scattering and molecular simulations under conditions that favor closed or open states. We find that closed-state conditions correspond well to closed X-ray structures, while open-state conditions implicate intermediate or mixed open/closed structures. These results elucidate the states sampled during ion channel gating, and the utility of neutron scattering combined with simulations to distinguish subtle shifts in membrane protein structure.
Pentameric ligand-gated ion channels undergo subtle conformational cycling to control electrochemical signal transduction in many kingdoms of life. Several crystal structures have now been reported in this family, but the functional relevance of such models remains unclear. Here, we used small-angle neutron scattering (SANS) to probe ambient solution-phase properties of the pH-gated bacterial ion channel GLIC under resting and activating conditions. Data collection was optimized by inline paused-flow size-exclusion chromatography, and exchanging into deuterated detergent to hide the micelle contribution. Resting-state GLIC was the best-fit crystal structure to SANS curves, with no evidence for divergent mechanisms. Moreover, enhanced-sampling molecular-dynamics simulations enabled differential modeling in resting versus activating conditions, with the latter corresponding to an intermediate ensemble of both the extracellular and transmembrane domains. This work demonstrates state-dependent changes in a pentameric ion channel by SANS, an increasingly accessible method for macromolecular characterization with the coming generation of neutron sources.