期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:37
DOI:10.1073/pnas.2104093118
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
The glutamine transporter ASCT2 is an emerging therapeutic target for various cancer types. Here, we use an integrated computational and experimental approach to develop unique ASCT2 inhibitors targeting a conformational state useful for rational drug design. We apply computational chemistry tools such as molecular docking and molecular dynamics simulations, in combination with structure determination with cryo-electron microscopy and synthetic chemistry, to design multiple ASCT2 inhibitors. Our results reveal a unique mechanism of stereospecific inhibition of ASCT2 and highlight the utility of combining state-of-the-art computational and experimental approaches in characterizing challenging human membrane protein targets.
ASCT2 (SLC1A5) is a sodium-dependent neutral amino acid transporter that controls amino acid homeostasis in peripheral tissues. In cancer, ASCT2 is up-regulated where it modulates intracellular glutamine levels, fueling cell proliferation. Nutrient deprivation via ASCT2 inhibition provides a potential strategy for cancer therapy. Here, we rationally designed stereospecific inhibitors exploiting specific subpockets in the substrate binding site using computational modeling and cryo-electron microscopy (cryo-EM). The final structures combined with molecular dynamics simulations reveal multiple pharmacologically relevant conformations in the ASCT2 binding site as well as a previously unknown mechanism of stereospecific inhibition. Furthermore, this integrated analysis guided the design of a series of unique ASCT2 inhibitors. Our results provide a framework for future development of cancer therapeutics targeting nutrient transport via ASCT2, as well as demonstrate the utility of combining computational modeling and cryo-EM for solute carrier ligand discovery.