摘要:AbstractA great number of visual simultaneous localization and mapping (VSLAM) systems need to assume static features in the environment. However, moving objects can vastly impair the performance of a VSLAM system which relies on the static-world assumption. To cope with this challenging topic, a real-time and robust VSLAM system based on ORB-SLAM2 for dynamic environments was proposed. To reduce the influence of dynamic content, we incorporate the deep-learning-based object detection method in the visual odometry, then the dynamic object probability model is added to raise the efficiency of object detection deep neural network and enhance the real-time performance of our system. Experiment with both on the TUM and KITTI benchmark dataset, as well as in a real-world environment, the results clarify that our method can significantly reduce the tracking error or drift, enhance the robustness, accuracy and stability of the VSLAM system in dynamic scenes.
关键词:Visual SLAM;Object detection;Dynamic object probability model;Dynamic environments