首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Leveraging long short-term memory (LSTM)-based neural networks for modeling structure–property relationships of metamaterials from electromagnetic responses
  • 本地全文:下载
  • 作者:Prajith Pillai ; Parama Pal ; Rinu Chacko
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-97999-6
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:We report a neural network model for predicting the electromagnetic response of mesoscale metamaterials as well as generate design parameters for a desired spectral behavior. Our approach entails treating spectral data as time-varying sequences and the inverse problem as a single-input multiple output model, thereby compelling the network architecture to learn the geometry of the metamaterial designs from the spectral data in lieu of abstract features.
国家哲学社会科学文献中心版权所有