首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2
  • 本地全文:下载
  • 作者:Nermeen Yosri ; Aida A. Abd El-Wahed ; Reem Ghonaim
  • 期刊名称:Foods
  • 电子版ISSN:2304-8158
  • 出版年度:2021
  • 卷号:10
  • 期号:8
  • DOI:10.3390/foods10081776
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Propolis, a resin produced by honeybees, has long been used as a dietary supplement and folk remedy, and more recent preclinical investigations have demonstrated a large spectrum of potential therapeutic bioactivities, including antioxidant, antibacterial, anti-inflammatory, neuroprotective, immunomodulatory, anticancer, and antiviral properties. As an antiviral agent, propolis and various constituents have shown promising preclinical efficacy against adenoviruses, influenza viruses, respiratory tract viruses, herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 300 chemical components have been identified in propolis, including terpenes, flavonoids, and phenolic acids, with the specific constituent profile varying widely according to geographic origin and regional flora. Propolis and its constituents have demonstrated potential efficacy against SARS-CoV-2 by modulating multiple pathogenic and antiviral pathways. Molecular docking studies have demonstrated high binding affinities of propolis derivatives to multiple SARS-CoV-2 proteins, including 3C-like protease (3CL pro), papain-like protease (PL pro), RNA-dependent RNA polymerase (RdRp), the receptor-binding domain (RBD) of the spike protein (S-protein), and helicase (NSP13), as well as to the viral target angiotensin-converting enzyme 2 (ACE2). Among these compounds, retusapurpurin A has shown high affinity to 3CL pro (ΔG = −9.4 kcal/mol), RdRp (−7.5), RBD (−7.2), NSP13 (−9.4), and ACE2 (−10.4) and potent inhibition of viral entry by forming hydrogen bonds with amino acid residues within viral and human target proteins. In addition, propolis-derived baccharin demonstrated even higher binding affinity towards PL pro (−8.2 kcal/mol). Measures of drug-likeness parameters, including metabolism, distribution, absorption, excretion, and toxicity (ADMET) characteristics, also support the potential of propolis as an effective agent to combat COVID-19.
  • 关键词:enpropolis;chemical constituents;antiviral;immunomodulatory;clinical applications;SARS-CoV-2;molecular docking
国家哲学社会科学文献中心版权所有