首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Predicting postoperative pain following root canal treatment by using artificial neural network evaluation
  • 本地全文:下载
  • 作者:Xin Gao ; Xing Xin ; Zhi Li
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-96777-8
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:This study aimed to evaluate the accuracy of back propagation (BP) artificial neural network model for predicting postoperative pain following root canal treatment (RCT). The BP neural network model was developed using MATLAB 7.0 neural network toolbox, and the functional projective relationship was established between the 13 parameters (including the personal, inflammatory reaction, operative procedure factors) and postoperative pain of the patient after RCT. This neural network model was trained and tested based on data from 300 patients who underwent RCT. Among these cases, 210, 45 and 45 were allocated as the training, data validation and test samples, respectively, to assess the accuracy of prediction. In this present study, the accuracy of this BP neural network model was 95.60% for the prediction of postoperative pain following RCT. To conclude, the BP network model could be used to predict postoperative pain following RCT and showed clinical feasibility and application value.
国家哲学社会科学文献中心版权所有