期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:33
DOI:10.1073/pnas.2023216118
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Differences in immune functioning stem from multiple factors, including sex and aging. However, the specific roles of these variables in immunity remain elusive. We profiled immunocytes from young and old males and females at single-cell resolution and constructed a precise atlas of blood-circulating immunocytes. T cell– and B cell–activated signals were higher in young females than males, while aging increased the sex-related differences in immunocytes, cellular composition, and inflammatory signaling. Additionally, males showed a higher accumulation of inflammatory factors during aging, whereas cell–cell communication analysis revealed different trends in gene expression between females and males with aging. These findings might aid in the understanding of the mechanisms underlying sex-based differences in immunity and disease susceptibility across the lifespan.
Sex and aging influence the human immune system, resulting in disparate responses to infection, autoimmunity, and cancer. However, the impact of sex and aging on the immune system is not yet fully elucidated. Using small conditional RNA sequencing, we found that females had a lower percentage of natural killer (NK) cells and a higher percentage of plasma cells in peripheral blood compared with males. Bioinformatics revealed that young females exhibited an overrepresentation of pathways that relate to T and B cell activation. Moreover, cell–cell communication analysis revealed evidence of increased activity of the BAFF/APRIL systems in females. Notably, aging increased the percentage of monocytes and reduced the percentage of naïve T cells in the blood and the number of differentially expressed genes between the sexes. Aged males expressed higher levels of inflammatory genes. Collectively, the results suggest that females have more plasma cells in the circulation and a stronger BAFF/APRIL system, which is consistent with a stronger adaptive immune response. In contrast, males have a higher percentage of NK cells in blood and a higher expression of certain proinflammatory genes. Overall, this work expands our knowledge of sex differences in the immune system in humans.
关键词:ensex;aging;single-cell sequencing;immune responses;cell–cell communication