首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Nonlinear Finite Impulse Response Estimation using Regularized Neural Networks
  • 本地全文:下载
  • 作者:Roberto G. Ramírez-Chavarría ; Maarten Schoukens
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:174-179
  • DOI:10.1016/j.ifacol.2021.08.354
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis work presents a new regularization scheme for identifying nonlinear finite impulse response (NFIR) models using artificial neural networks (ANN). Prior knowledge, such as the exponentially decaying nature of an impulse response, is included during the identification using a regularization approach inspired on the well-known regularized linear finite impulse response identification literature. More specifically the sensitivity of the modeled output with respect to the delayed input of the NFIR model is penalized to provide an exponentially decaying prior. The proposed method is illustrated and compared to other ANN regularization schemes on a simulation example.
  • 关键词:KeywordsNonlinear IdentificationNonlinear Finite Impulse ResponseArtificial Neural NetworkRegularization
国家哲学社会科学文献中心版权所有