首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:RaPId - A Parameter Estimation Toolbox for Modelica/FMI-Based Models Exploiting Global Optimization Methods
  • 本地全文:下载
  • 作者:Meaghan Podlaski ; Luigi Vanfretti ; Tetiana Bogodorova
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:391-396
  • DOI:10.1016/j.ifacol.2021.08.391
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper describes new additions to the Rapid Parameter Identification Toolbox (RaPId), which is an open-source MATLAB toolbox for parameter estimation using models developed with the Modelica language and exported with the functional mock-up interface (FMI) Standard. These additions include an updated graphical user interface (GUI), an optimization method utilizing multiple starting points for a gradient descent optimization, and examples for different cyber-physical system applications such as the Duffing-Holmes equation modeling in a form of electrical circuit and a hydroelectric power plant modeling.
  • 关键词:KeywordsDynamic modelsElectric power systemsGlobal optimizationParameter estimationSoftware tools
国家哲学社会科学文献中心版权所有