摘要:AbstractThis paper formulates an input design approach for truncated infinite impulse response identification in the context of implicit model representations recently used as basis for data-driven simulation and control approaches. Precisely, the considered model consists of a linear combination of the columns of a data (or signal) matrix. An optimal combination for the case of noisy data was recently proposed using a maximum likelihood approach, and the objective here is to optimize the input entries of the data matrix such that the mean-square error matrix of the estimate is minimized. A least-norm problem is derived in terms of the optimality criteria typically considered in the experiment design literature. Numerical results showcase the improved estimation fit achieved with the optimized input.