首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Experiment design for impulse response identification with signal matrix models ⁎
  • 本地全文:下载
  • 作者:Andrea Iannelli ; Mingzhou Yin ; Roy S. Smith
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:625-630
  • DOI:10.1016/j.ifacol.2021.08.430
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper formulates an input design approach for truncated infinite impulse response identification in the context of implicit model representations recently used as basis for data-driven simulation and control approaches. Precisely, the considered model consists of a linear combination of the columns of a data (or signal) matrix. An optimal combination for the case of noisy data was recently proposed using a maximum likelihood approach, and the objective here is to optimize the input entries of the data matrix such that the mean-square error matrix of the estimate is minimized. A least-norm problem is derived in terms of the optimality criteria typically considered in the experiment design literature. Numerical results showcase the improved estimation fit achieved with the optimized input.
  • 关键词:KeywordsSystem identificationExperiment designData-driven methodsIIR estimation
国家哲学社会科学文献中心版权所有