首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Decoupling multivariate functions using a non-parametric Filtered CPD approach ⁎
  • 本地全文:下载
  • 作者:Jan Decuyper ; Koen Tiels ; Siep Weiland
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:451-456
  • DOI:10.1016/j.ifacol.2021.08.401
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractBlack-box model structures are dominated by large multivariate functions. Usually a generic basis function expansion is used, e.g. a polynomial basis, and the parameters of the function are tuned given the data. This is a pragmatic and often necessary step considering the black-box nature of the problem. However, having identified a suitable function, there is no need to stick to the original basis. So-called decoupling techniques aim at translating multivariate functions into an alternative basis, thereby both reducing the number of parameters and retrieving underlying structure. In this work a filtered canonical polyadic decomposition (CPD) is introduced. It is a non-parametric method which is able to retrieve decoupled functions even when facing non-unique decompositions. Tackling this obstacle paves the way for a large number of modelling applications.
  • 关键词:Keywordsdecoupling multivariate functionsCPDmodel reductionnonlinear system identification
国家哲学社会科学文献中心版权所有