首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:A new scheme for fault detection based on Optimal Upper Bounded Interval Kalman Filter
  • 本地全文:下载
  • 作者:Quoc Hung Lu ; Soheib Fergani ; Carine Jauberthie
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:292-297
  • DOI:10.1016/j.ifacol.2021.08.374
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper deals with a sensor fault detection approach using the Optimal Upper Bounded Interval Kalman Filter (OUBIKF) and an adaptive degree of freedom χ2-statistics method. It is devoted to discrete time linear model subjected to mixed uncertainties in terms of observations and noises. Mixed uncertainties mean both bounded and stochastic uncertainties. The degrees of freedom of this χ2 hypothesis test method are adaptively chosen thanks to amplifier coefficients improving the detection of the sensor faults. The proposed approach is an extension of a result developped in Lu et al. (2019). Application on a vehicle bicycle model highlights the efficiency of the proposed approach. Comparisons with other efficient estimation and fault detection strategies are provided to discuss the accuracy of the obtained results.
  • 关键词:KeywordsFDI for linear systemFilteringestimation
国家哲学社会科学文献中心版权所有