首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Reducing the computational effort of min-max model predictive control with regional feedback laws ⁎
  • 本地全文:下载
  • 作者:Kai König ; Martin Mönnigmann
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:6
  • 页码:58-63
  • DOI:10.1016/j.ifacol.2021.08.524
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractRecently, a regional MPC approach has been proposed that exploits the piecewise affine structure of the optimal solution (without computing the entire explicit solution before). Here,regionalrefers to the idea of using the affine feedback law that is optimal in a vicinity of the current state of operation, and therefore provides the optimal input signal without requiring to solve a QP. In the present paper, we apply the idea of regional MPC to min-max MPC problems. We show that the new robust approach can significantly reduce the number of QPs to be solved within min-max MPC resulting in a reduced overall computational effort. Moreover, we compare the performance of the new approach to an existing robust regional MPC approach using a numerical example with varying horizon. Finally, we provide a rule for choosing a suitable robust regional MPC approach based on the horizon.
  • 关键词:KeywordsRobust controlpredictive controlquadratic programmingmodel-based controlconstraints
国家哲学社会科学文献中心版权所有