首页    期刊浏览 2025年03月03日 星期一
登录注册

文章基本信息

  • 标题:Uncertainty Propagation by Linear Regression Kalman Filters for Stochastic NMPC
  • 本地全文:下载
  • 作者:Rien Quirynen ; Karl Berntorp
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:6
  • 页码:76-82
  • DOI:10.1016/j.ifacol.2021.08.527
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractStochastic nonlinear model predictive control (SNMPC) allows to directly take model uncertainty into account, e.g., by including probabilistic chance constraints. This paper proposes linear-regression Kalman filtering to perform high-accuracy propagation of mean and covariance information for the nonlinear system dynamics in a tractable approximation of the stochastic optimal control problem. In addition, a tailored adjoint-based sequential quadratic programming (SQP) algorithm is presented to considerably reduce the computational cost and allow a real-time implementation of the resulting SNMPC. The prediction accuracy and control performance of the proposed approach are illustrated on a vehicle control application subject to external disturbances, while highlighting a worst-case computation time of 10 ms for SNMPC which is close to that of deterministic NMPC for this particular case study.
  • 关键词:KeywordsStochastic nonlinear model predictive controllinear-regression Kalman filteringsequential quadratic programmingreal-time optimization algorithms
国家哲学社会科学文献中心版权所有