摘要:The PJM Interconnection is a regional electricity transmission organization which as of 30 April 2004 coordinated the dispatch of electricity over 320,000 km of transmission lines. The backbone of PJM's transmission system is a series of 500 kilovolt (kV) transmission lines and transformers. PJM operates both hourly real-time and day-ahead markets for energy. The differences between PJM's real-time and day-ahead prices reflect unexpected operating conditions. Using ground-based magnetometer data as a proxy for geomagnetically induced currents (GICs), we present evidence that the differences between PJM's real-time and day-ahead prices are statistically related with the GIC proxy. Extra high voltage energy losses and a measure of real-time congestion costs are also shown to be statistically related with the GIC proxy. The paper investigates these statistical linkages by examining the incidence of declared constraints in the 500 kV transformers. The relationship between the GIC proxy and the incidence of declared constraints in the transformers is examined using a multivariate regression model with a dependent variable that is binary. The model is estimated using hourly data over the period 1 April 2002 through 30 April 2004. The results indicate that GICs can contribute to conditions in which the system operator declares one or more of the 500 kV transformers to be constrained. This finding takes into account forecasted load, load forecasting errors, ambient temperature, a proxy for known transmission constraints, and scheduled flows with other power grids. The results are also consistent with published findings that GICs can contribute to overheating problems in transformers.