首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Dose spectra from energetic particles and neutrons
  • 本地全文:下载
  • 作者:Nathan Schwadron ; Chris Bancroft ; Peter Bloser
  • 期刊名称:Space Weather
  • 印刷版ISSN:1542-7390
  • 出版年度:2013
  • 卷号:11
  • 期号:10
  • 页码:547-556
  • DOI:10.1002/swe.20095
  • 语种:English
  • 出版社:American Geophysical Union
  • 摘要:Dose spectra from energetic particles and neutrons (DoSEN) are an early-stage space technology research project that combines two advanced complementary radiation detection concepts with fundamental advantages over traditional dosimetry. DoSEN measures not only the energy but also the charge distribution (including neutrons) of energetic particles that affect human (and robotic) health in a way not presently possible with current dosimeters. For heavy ions and protons, DoSEN provides a direct measurement of the lineal energy transfer (LET) spectra behind shielding material. For LET measurements, DoSEN contains stacks of thin-thick Si detectors similar in design to those used for the Cosmic Ray Telescope for the Effects of Radiation. With LET spectra, we can now directly break down the observed spectrum of radiation into its constituent heavy-ion components and through biologically based quality factors that provide not only doses and dose rates but also dose equivalents, associated rates, and even organ doses. DoSEN also measures neutrons from 10 to 100 MeV, which requires enough sensitive mass to fully absorb recoil particles that the neutrons produce. DoSEN develops the new concept of combining these independent measurements and using the coincidence of LET measurements and neutron detection to significantly reduce backgrounds in each measurement. The background suppression through the use of coincidence allows for significant reductions in size, mass, and power needed to provide measurements of dose, neutron dose, dose equivalents, LET spectra, and organ doses. Thus, we introduce the DoSEN concept: a promising low-mass instrument that detects the full spectrum of energetic particles, heavy ions, and neutrons to determine biological impact of radiation in space.
国家哲学社会科学文献中心版权所有