首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:Electricity Price Fundamentals in Hydrothermal Power Generation Markets Using Machine Learning and Quantile Regression Analysis
  • 本地全文:下载
  • 作者:Andrés Oviedo-Gómez ; Sandra Milena Londoño-Hernández ; Diego Fernando Manotas-Duque
  • 期刊名称:International Journal of Energy Economics and Policy
  • 电子版ISSN:2146-4553
  • 出版年度:2021
  • 卷号:11
  • 期号:5
  • 页码:66-77
  • 语种:English
  • 出版社:EconJournals
  • 摘要:<p>A hydrothermal power generation market is characterized by a strong dependence on water reservoir capacity and fossil fuel sources, which causes differences in generation marginal costs and high variability of the electricity spot price. Therefore, this study proposes an empirical approach to identify the price determinants and their effects on price dynamics. This paper presents two methodologies: a machine learning approach and a quantile regression analysis. The first method is used to validate the price determinants through a prediction process, and the second, the quantile regression, to identify the non-linear effects. The most important factors observed are total market demand, water reservoirs capacity for generation, and fossil fuel consumption. The results offer a new perspective about the market structure and spot price volatility.</p><p><strong>Keywords:</strong> electricity prices; hydrothermal power generation markets; machine learning; quantile regression; Gaussian process regression.</p><p><strong>JEL Classifications: </strong>C22, Q41, Q43, Q47</p><p>DOI: <a href="https://doi.org/10.32479/ijeep.11346">https://doi.org/10.32479/ijeep.11346</a></p>
国家哲学社会科学文献中心版权所有