首页    期刊浏览 2025年01月19日 星期日
登录注册

文章基本信息

  • 标题:Education 4.0: Teaching the Basics of KNN, LDA and Simple Perceptron Algorithms for Binary Classification Problems
  • 本地全文:下载
  • 作者:Diego Lopez-Bernal ; David Balderas ; Pedro Ponce
  • 期刊名称:Future Internet
  • 电子版ISSN:1999-5903
  • 出版年度:2021
  • 卷号:13
  • 期号:8
  • 页码:193
  • DOI:10.3390/fi13080193
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:One of the main focuses of Education 4.0 is to provide students with knowledge on disruptive technologies, such as Machine Learning (ML), as well as the skills to implement this knowledge to solve real-life problems. Therefore, both students and professors require teaching and learning tools that facilitate the introduction to such topics. Consequently, this study looks forward to contributing to the development of those tools by introducing the basic theory behind three machine learning classifying algorithms: K-Nearest-Neighbor (KNN), Linear Discriminant Analysis (LDA), and Simple Perceptron; as well as discussing the diverse advantages and disadvantages of each method. Moreover, it is proposed to analyze how these methods work on different conditions through their implementation over a test bench. Thus, in addition to the description of each algorithm, we discuss their application to solving three different binary classification problems using three different datasets, as well as comparing their performances in these specific case studies. The findings of this study can be used by teachers to provide students the basic knowledge of KNN, LDA, and perceptron algorithms, and, at the same time, it can be used as a guide to learn how to apply them to solve real-life problems that are not limited to the presented datasets.
国家哲学社会科学文献中心版权所有