首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Spiking Neural Network-Based Near-Sensor Computing for Damage Detection in Structural Health Monitoring
  • 本地全文:下载
  • 作者:Francesco Barchi ; Luca Zanatta ; Emanuele Parisi
  • 期刊名称:Future Internet
  • 电子版ISSN:1999-5903
  • 出版年度:2021
  • 卷号:13
  • 期号:8
  • 页码:219
  • DOI:10.3390/fi13080219
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:In this work, we present an innovative approach for damage detection of infrastructures on-edge devices, exploiting a brain-inspired algorithm. The proposed solution exploits recurrent spiking neural networks (LSNNs), which are emerging for their theoretical energy efficiency and compactness, to recognise damage conditions by processing data from low-cost accelerometers (MEMS) directly on the sensor node. We focus on designing an efficient coding of MEMS data to optimise SNN execution on a low-power microcontroller. We characterised and profiled LSNN performance and energy consumption on a hardware prototype sensor node equipped with an STM32 embedded microcontroller and a digital MEMS accelerometer. We used a hardware-in-the-loop environment with virtual sensors generating data on an SPI interface connected to the physical microcontroller to evaluate the system with a data stream from a real viaduct. We exploited this environment also to study the impact of different on-sensor encoding techniques, mimicking a bio-inspired sensor able to generate events instead of accelerations. Obtained results show that the proposed optimised embedded LSNN (eLSNN), when using a spike-based input encoding technique, achieves 54% lower execution time with respect to a naive LSNN algorithm implementation present in the state-of-the-art. The optimised eLSNN requires around 47 kCycles, which is comparable with the data transfer cost from the SPI interface. However, the spike-based encoding technique requires considerably larger input vectors to get the same classification accuracy, resulting in a longer pre-processing and sensor access time. Overall the event-based encoding techniques leads to a longer execution time (1.49×) but similar energy consumption. Moving this coding on the sensor can remove this limitation leading to an overall more energy-efficient monitoring system.
国家哲学社会科学文献中心版权所有