首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Real-Time Management of Vessel Carbon Dioxide Emissions Based on Automatic Identification System Database Using Deep Learning
  • 本地全文:下载
  • 作者:Yongpeng Wang ; Daisuke Watanabe ; Enna Hirata
  • 期刊名称:Journal of Marine Science and Engineering
  • 电子版ISSN:2077-1312
  • 出版年度:2021
  • 卷号:9
  • 期号:8
  • 页码:871
  • DOI:10.3390/jmse9080871
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:In this study, we propose an effective method using deep learning to strengthen real-time vessel carbon dioxide emission management. We propose a method to predict real-time carbon dioxide emissions of the vessel in three steps: (1) convert the trajectory data of the fixed time interval into a spatial–temporal sequence, (2) apply a long short-term memory (LSTM) model to predict the future trajectory and vessel status data of the vessel, and (3) predict the carbon dioxide emissions. Automatic identification system (AIS) database of a liquefied natural gas (LNG) vessel were selected as the sample and we reconstructed the trajectory data with a fixed time interval using cubic spline interpolation. Applying the interpolated AIS data, the carbon dioxide emissions of the vessel were calculated based on the International Towing Tank Conference (ITTC) recommended procedures. The experimental results are twofold. First, it reveals that vessel emissions are currently underestimated. This study clearly indicates that the actual carbon dioxide emissions are higher than those reported. The finding offers insight into how to accurately measure the emissions of vessels, and hence, better execute a greenhouse gases (GHGs) reduction strategy. Second, the LSTM model has a better trajectory prediction performance than the recurrent neural network (RNN) model. The errors of the trajectory endpoint and carbon dioxide emissions were small, which shows that the LSTM model is suitable for spatial–temporal data prediction with excellent performance. Therefore, this study offers insights to strengthen the real-time management and control of vessel greenhouse gas emissions and handle those in a more efficient way.
国家哲学社会科学文献中心版权所有