摘要:Remediation of nitrate pollution of Earth's rivers and aquifers is hampered by cumulative biogeochemical processes and nitrogen sources. Isotopes (15N, 18O) help unravel spatiotemporal nitrogen(N)-cycling of aquatic nitrate (NO3-). We synthesized nitrate isotope data (n = ~5200) for global rivers and shallow aquifers for common patterns and processes. Rivers had lower median NO3- (0.3 0.2 mg L-1, n = 2902) compared to aquifers (5.5 5.1 mg L-1, n = 2291) and slightly lower 15N values (+7.1 3.8, n = 2902 vs +7.7 4.5, n = 2291), but were indistinguishable in 18O (+2.3 6.2, n = 2790 vs +2.3 5.4, n = 2235). The isotope composition of NO3- was correlated with water temperature revealing enhanced N-cascading in warmer climates. Seasonal analyses revealed higher 15N and 18O values in wintertime, suggesting waste-related N-source signals are better preserved in the cold seasons. Isotopic assays of nitrate biogeochemical transformations are key to understanding nitrate pollution and to inform beneficial agricultural and land management strategies. Nitrogen-cascading increases in warmer climates and median nitrate concentrations are lower in rivers compared to aquifers globally, according to a global synthesis of nitrogen isotope data in rivers and aquifers.