首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Summertime low clouds mediate the impact of the large-scale circulation on Arctic sea ice
  • 本地全文:下载
  • 作者:Yiyi Huang ; Qinghua Ding ; Xiquan Dong
  • 期刊名称:Communications Earth & Environment
  • 电子版ISSN:2662-4435
  • 出版年度:2021
  • 卷号:2
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s43247-021-00114-w
  • 语种:English
  • 出版社:Nature Research
  • 摘要:The rapid Arctic sea ice retreat in the early 21st century is believed to be driven by several dynamic and thermodynamic feedbacks, such as ice-albedo feedback and water vapor feedback. However, the role of clouds in these feedbacks remains unclear since the causality between clouds and these processes is complex. Here, we use NASA CERES satellite products and NCAR CESM model simulations to suggest that summertime low clouds have played an important role in driving sea ice melt by amplifying the adiabatic warming induced by a stronger anticyclonic circulation aloft. The upper-level high pressure regulates low clouds through stronger downward motion and increasing lower troposphere relative humidity. The increased low clouds favor more sea ice melt via emitting stronger longwave radiation. Then decreased surface albedo triggers a positive ice-albedo feedback, which further enhances sea ice melt. Considering the importance of summertime low clouds, accurate simulation of this process is a prerequisite for climate models to produce reliable future projections of Arctic sea ice. Summertime low clouds in the Arctic play an important role in inducing sea ice melt as they amplify warming from high pressure systems aloft through radiative effects and feedbacks, according to analyses of observations and model simulations.
国家哲学社会科学文献中心版权所有