摘要:SummaryMicrobial electrosynthesis (MES) represents a sustainable platform that converts waste into resources, using microorganisms within an electrochemical cell. Traditionally, MES refers to the oxidation/reduction of a reactant at the electrode surface with externally applied potential bias. However, microbial fuel cells (MFCs) generate electrons that can drive electrochemical reactions at otherwise unbiased electrodes. Electrosynthesis in MFCs is driven by microbial oxidation of organic matter releasing electrons that force the migration of cationic species to the cathode. Here, we explore how electrosynthesis can coexist within electricity-producing MFCs thanks to electro-separation of cations, electroosmotic drag, and oxygen reduction within appropriately designed systems. More importantly, we report on a novel method ofin situmodulation for electrosynthesis, through additional “pin” electrodes. Several MFC electrosynthesis modulating methods that adjust the electrode potential of each half-cell through the pin electrodes are presented. The innovative concept of electrosynthesis within the electricity producing MFCs provides a multidisciplinary platform converting waste-to-resources in a self-sustainable way.Graphical abstractDisplay OmittedChemistry; Electrochemistry; Electrochemical energy production; Electrochemical energy conversion; Engineering