首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:ESTIMATION OF LAND SURFACE ALBEDO FROM GCOM-C/SGLI SURFACE REFLECTANCE
  • 本地全文:下载
  • 作者:J. Susaki ; H. Sato ; A. Kuriki
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2021
  • 卷号:V-3-2021
  • 页码:227-234
  • DOI:10.5194/isprs-annals-V-3-2021-227-2021
  • 语种:English
  • 出版社:Copernicus Publications
  • 摘要:This paper examines algorithms for estimating terrestrial albedo from the products of the Global Change Observation Mission – Climate (GCOM-C) / Second-generation Global Imager (SGLI), which was launched in December 2017 by the Japan Aerospace Exploration Agency. We selected two algorithms: one based on a bidirectional reflectance distribution function (BRDF) model and one based on multi-regression models. The former determines kernel-driven BRDF model parameters from multiple sets of reflectance and estimates the land surface albedo from those parameters. The latter estimates the land surface albedo from a single set of reflectance with multi-regression models. The multi-regression models are derived for an arbitrary geometry from datasets of simulated albedo and multi-angular reflectance. In experiments using in situ multi-temporal data for barren land, deciduous broadleaf forests, and paddy fields, the albedos estimated by the BRDF-based and multi-regression-based algorithms achieve reasonable root-mean-square errors. However, the latter algorithm requires information about the land cover of the pixel of interest, and the variance of its estimated albedo is sensitive to the observation geometry. We therefore conclude that the BRDF-based algorithm is more robust and can be applied to SGLI operational albedo products for various applications, including climate-change research.
国家哲学社会科学文献中心版权所有