首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Registration-based change detection for SAR images
  • 本地全文:下载
  • 作者:Alshimaa Y. Abo Gharbia ; Mohamed Amin ; Ashraf E. Mousa
  • 期刊名称:NRIAG Journal of Astronomy and Geophysics
  • 印刷版ISSN:2090-9977
  • 电子版ISSN:2090-9985
  • 出版年度:2020
  • 卷号:9
  • 期号:1
  • 页码:106-115
  • DOI:10.1080/20909977.2020.1723199
  • 语种:English
  • 出版社:Elsevier
  • 摘要:This paper presents an efficient change detection approach for Synthetic Aperture Radar (SAR) images. The basic idea of this approach is to use the log ratio of the two images for change detection after being registered with Scale-Invariant Feature Transform (SIFT). These two images are a reference image and another image for the same area acquired at a different time. The log ratio variations include changes in certain areas corresponding to the natural changes in the test image. Usually, SAR images contain some sort of noise. So, there is a need for a denoising process prior to estimating the log ratio to enhance the change detection results. A segmentation process is performed on the test image based on the log ratio values. Large values in the log ratio image correspond to detected changes in the test image. Simulation results on SAR images for a region of Jeddah demonstrate the success of the proposed approach.
  • 关键词:Registration;SIFT;SAR;change detection
国家哲学社会科学文献中心版权所有