期刊名称:The Baltic Journal of Road and Bridge Engineering
印刷版ISSN:1822-427X
出版年度:2019
卷号:14
期号:2
页码:178-207
DOI:10.7250/bjrbe.2019-14.439
语种:English
出版社:Vilnius Gediminas Technical University
摘要:Road traffic noise is a widespread problem, especially in the densely populated cities of Europe. Exposure to high levels of (traffic) noise leads to health problems, such as stress, sleep disturbance and even heart diseases. Noise-reducing asphalt pavements are more frequently developed and selected as a first noise abatement solution. Performance of noise-reducing asphalt pavement depends on the composition and properties of asphalt mixture components, and pavement properties such as layer thickness, voids in pavement, texture. Design of asphalt mixture for the noise-reducing asphalt pavements is even more complicated for severe and cold climate regions where significant temperature fluctuations and many of frost-thaw cycles occur. Thus, the balance between mechanical and acoustical durability depends on the proper selection of asphalt mixture components. Components of these asphalt mixtures have primarily to be tested to determine their physical and mechanical properties. The main aim of this research is to evaluate properties of local aggregates, bituminous binders, and regarding test results, select the most suitable materials for the design of high-quality, durable asphalt mixture for noise-reducing asphalt pavements. The research showed that Granite A is the most suitable aggregate for the design of asphalt mixtures for noise-reducing asphalt pavement. Short-term and particularly long-term ageing of polymer modified bituminous binder PMB 45/80-65 and PMB 25/55-60 decreases the number of aromatics and increases the amount of resins. Based on Multiple Stress Creep and Recovery test results, it is assumed that all bituminous binders selected for research are suitable for the asphalt mixture design of noise-reducing asphalt pavement in terms of resistance to rutting. However, considering all tests results, bituminous binder PMB 45/80-65 (1) showed the best performance and was the most suitable for the asphalt mixture design of noise-reducing asphalt pavement.