首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:SELECTION OF INPUT VARIABLES OF NONLINEAR AUTOREGRESSIVE NEURAL NETWORK MODEL FOR TIME SERIES DATA FORECASTING
  • 本地全文:下载
  • 作者:Hermansah Hermansah ; Dedi Rosadi ; Abdurakhman Abdurakhman
  • 期刊名称:MEDIA STATISTIKA
  • 印刷版ISSN:1979-3693
  • 电子版ISSN:2477-0647
  • 出版年度:2020
  • 卷号:13
  • 期号:2
  • 页码:116-124
  • DOI:10.14710/medstat.13.2.116-124
  • 语种:English
  • 出版社:MEDIA STATISTIKA
  • 摘要:NARNN is a type of ANN model consisting of a limited number of parameters and widely used for various applications. This study aims to determine the appropriate NARNN model, for the selection of input variables of nonlinear autoregressive neural network model for time series data forecasting, using the stepwise method. Furthermore, the study determines the optimal number of neurons in the hidden layer, using a trial and error method for some architecture. The NARNN model is combined in three parts, namely the learning method, the activation function, and the ensemble operator, to get the best single model. Its application in this study was conducted on real data, such as the interest rate of Bank Indonesia. The comparison results of MASE, RMSE, and MAPE values with ARIMA and Exponential Smoothing models shows that the NARNN is the best model used to effectively improve forecasting accuracy.
国家哲学社会科学文献中心版权所有