首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Computer Analysis of Architecture Using Automatic Image Understanding
  • 本地全文:下载
  • 作者:Fan Wei ; Yuan Li ; Lior Shamir
  • 期刊名称:Journal of Data Mining and Digital Humanities
  • 电子版ISSN:2416-5999
  • 出版年度:2019
  • 卷号:2018
  • 语种:English
  • 出版社:Nicolas Turenne
  • 摘要:In the past few years, computer vision and pattern recognition systems have been becoming increasingly more powerful, expanding the range of automatic tasks enabled by machine vision. Here we show that computer analysis of building images can perform quantitative analysis of architecture, and quantify similarities between city architectural styles in a quantitative fashion. Images of buildings from 18 cities and three countries were acquired using Google StreetView, and were used to train a machine vision system to automatically identify the location of the imaged building based on the image visual content. Experimental results show that the automatic computer analysis can automatically identify the geographical location of the StreetView image. More importantly, the algorithm was able to group the cities and countries and provide a phylogeny of the similarities between architectural styles as captured by StreetView images. These results demonstrate that computer vision and pattern recognition algorithms can perform the complex cognitive task of analyzing images of buildings, and can be used to measure and quantify visual similarities and differences between different styles of architectures. This experiment provides a new paradigm for studying architecture, based on a quantitative approach that can enhance the traditional manual observation and analysis. The source code used for the analysis is open and publicly available.
国家哲学社会科学文献中心版权所有