首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:A pilot study of an automated personal identification process: Applying machine learning to panoramic radiographs
  • 本地全文:下载
  • 作者:Adrielly Garcia Ortiz ; Gustavo Hermes Soares ; Gabriela Cauduro da Rosa
  • 期刊名称:Imaging Science in Dentistry
  • 印刷版ISSN:2233-7822
  • 出版年度:2021
  • 卷号:51
  • 期号:2
  • 页码:187-193
  • DOI:10.5624/isd.20200324
  • 语种:English
  • 出版社:Korean Academy of Oral and Maxillofacial Radiology
  • 摘要:This study aimed to assess the usefulness of machine learning and automation techniques to match pairs of panoramic radiographs for personal identification. Materials and Methods Two hundred panoramic radiographs from 100 patients (50 males and 50 females) were randomly selected from a private radiological service database. Initially, 14 linear and angular measurements of the radiographs were made by an expert. Eight ratio indices derived from the original measurements were applied to a statistical algorithm to match radiographs from the same patients, simulating a semi-automated personal identification process. Subsequently, measurements were automatically generated using a deep neural network for image recognition, simulating a fully automated personal identification process. Results Approximately 85% of the radiographs were correctly matched by the automated personal identification process. In a limited number of cases, the image recognition algorithm identified 2 potential matches for the same individual. No statistically significant differences were found between measurements performed by the expert on panoramic radiographs from the same patients. Conclusion Personal identification might be performed with the aid of image recognition algorithms and machine learning techniques. This approach will likely facilitate the complex task of personal identification by performing an initial screening of radiographs and matching ante-mortem and post-mortem images from the same individuals.
  • 关键词:Machine Learning; Radiography; Panoramic; Forensic Dentistry; Neural Networks; Computer; Forensic Anthropology
国家哲学社会科学文献中心版权所有