首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Impact of train/test sample regimen on performance estimate stability of machine learning in cardiovascular imaging
  • 本地全文:下载
  • 作者:Vikash Singh ; Michael Pencina ; Andrew J. Einstein
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-93651-5
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:As machine learning research in the field of cardiovascular imaging continues to grow, obtaining reliable model performance estimates is critical to develop reliable baselines and compare different algorithms. While the machine learning community has generally accepted methods such as k-fold stratified cross-validation (CV) to be more rigorous than single split validation, the standard research practice in medical fields is the use of single split validation techniques. This is especially concerning given the relatively small sample sizes of datasets used for cardiovascular imaging. We aim to examine how train-test split variation impacts the stability of machine learning (ML) model performance estimates in several validation techniques on two real-world cardiovascular imaging datasets: stratified split-sample validation (70/30 and 50/50 train-test splits), tenfold stratified CV, 10 × repeated tenfold stratified CV, bootstrapping (500 × repeated), and leave one out (LOO) validation. We demonstrate that split validation methods lead to the highest range in AUC and statistically significant differences in ROC curves, unlike the other aforementioned approaches. When building predictive models on relatively small data sets as is often the case in medical imaging, split-sample validation techniques can produce instability in performance estimates with variations in range over 0.15 in the AUC values, and thus any of the alternate validation methods are recommended.
国家哲学社会科学文献中心版权所有