摘要:SummaryWe developed a spatially-tracked single neuron transcriptomics map of an intrinsic cardiac ganglion, the right atrial ganglionic plexus (RAGP) that is a critical mediator of sinoatrial node (SAN) activity. This 3D representation of RAGP used neuronal tracing to extensively map the spatial distribution of the subset of neurons that project to the SAN. RNA-seq of laser capture microdissected neurons revealed a distinct composition of RAGP neurons compared to the central nervous system and a surprising finding that cholinergic and catecholaminergic markers are coexpressed, suggesting multipotential phenotypes that can drive neuroplasticity within RAGP. High-throughput qPCR of hundreds of laser capture microdissected single neurons confirmed these findings and revealed a high dimensionality of neuromodulatory factors that contribute to dynamic control of the heart. Neuropeptide-receptor coexpression analysis revealed a combinatorial paracrine neuromodulatory network within RAGP informing follow-on studies on the vagal control of RAGP to regulate cardiac function in health and disease.Graphical abstractDisplay OmittedHighlights•Spatially-tracked single neuron transcriptomics map of intrinsic cardiac ganglia•Distinct composition of intrinsic cardiac neurons compared to the central neurons•Correlation of cholinergic and catecholaminergic markers suggesting neuroplasticity•Adaptive and dynamic system driven by putative paracrine neuromodulatory networksCardiovascular medicine; Molecular physiology; Systems neuroscience; Transcriptomics