首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Overcoming the curse of dimensionality for approximating Lyapunov functions with deep neural networks under a small-gain condition
  • 本地全文:下载
  • 作者:Lars Grüne
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:9
  • 页码:317-322
  • DOI:10.1016/j.ifacol.2021.06.152
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe propose a deep neural network architecture for storing approximate Lyapunov functions of systems of ordinary differential equations. Under a small-gain condition on the system, the number of neurons needed for an approximation of a Lyapunov function with fixed accuracy grows only polynomially in the state dimension, i.e., the proposed approach is able to overcome the curse of dimensionality.
  • 关键词:Keywordsdeep neural networkLyapunov functionstabilitysmall-gain conditioncurse of dimensionality
国家哲学社会科学文献中心版权所有