首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Recursive estimation of the scatter matrix of ECD: the Riemannian Information Gradient method ⁎ ⁎
  • 本地全文:下载
  • 作者:Zhou Jialun ; Salem Said ; Yannick Berthoumieu
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:9
  • 页码:713-718
  • DOI:10.1016/j.ifacol.2021.06.134
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractECD (elliptically-contoured distribution) models have been found remarkably successful in representing natural signals. At present, the estimation of these models is at the heart of numerous signal processing applications. Unfortunately, state-of-the-art methods for estimating the parameters of an ECD, especially its scatter matrix, may turn out to have excessive computational complexity. To remedy this problem, the present work introduces the Riemannian information gradient method, for recursive (i.e. online) estimation of the scatter matrix. It is shown that this method holds a significant advantage in terms of computational complexity, while still achieving the same performance as state-of-the-art methods.
  • 关键词:Keywordselliptically-contoured distributiononline estimationmaximum-likelihoodFisher information metric
国家哲学社会科学文献中心版权所有