首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Hidden Markov chains and fields with observations in Riemannian manifolds
  • 本地全文:下载
  • 作者:Salem Said ; Nicolas Le Bihan ; Jonathan H. Manton
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:9
  • 页码:719-724
  • DOI:10.1016/j.ifacol.2021.06.135
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractHidden Markov chain, or Markov field, models, with observations in a Euclidean space, play a major role across signal and image processing. The present work provides a statistical framework which can be used to extend these models, along with related, popular algorithms (such as the Baum-Welch algorithm), to the case where the observations lie in a Riemannian manifold. It is motivated by the potential use of hidden Markov chains and fields, with observations in Riemannian manifolds, as models for complex signals and images.
  • 关键词:KeywordsRiemannian manifoldhidden Markov modelMarkov fieldEM algorithm
国家哲学社会科学文献中心版权所有