期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2015
卷号:112
期号:13
页码:E1550-E1558
DOI:10.1073/pnas.1503370112
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceIn the colon, stem cell self-renewal and multipotency is regulated by the polycomb complex protein BMI1, among other genes. Differentiation is regulated by the transcription factor caudal-type homeobox 1 (CDX1), expression of which coincides with repression of BMI1. Colorectal cancer stem cells (CSCs) express BMI1 but not CDX1. Tumors that silence CDX1 have a higher proportion of CSCs and an undifferentiated histology, whereas aberrant CDX1 expression is associated with intestinal metaplasias such as Barrett's esophagus. We have identified microRNA-215 (miR-215) as a target of CDX1 in colon cancer that mediates repression of BMI1. MiR-215 operates downstream of CDX1 to promote differentiation and inhibit stemness. In combination with recent advances in the therapeutic uses of small RNAs, miR-215 could offer a novel method to specifically target CSCs. The transcription factor caudal-type homeobox 1 (CDX1) is a key regulator of differentiation in the normal colon and in colorectal cancer (CRC). CDX1 activates the expression of enterocyte genes, but it is not clear how the concomitant silencing of stem cell genes is achieved. MicroRNAs (miRNAs) are important mediators of gene repression and have been implicated in tumor suppression and carcinogenesis, but the roles of miRNAs in differentiation, particularly in CRC, remain poorly understood. Here, we identified microRNA-215 (miR-215) as a direct transcriptional target of CDX1 by using high-throughput small RNA sequencing to profile miRNA expression in two pairs of CRC cell lines: CDX1-low HCT116 and HCT116 with stable CDX1 overexpression, and CDX1-high LS174T and LS174T with stable CDX1 knockdown. Validation of candidate miRNAs identified by RNA-seq in a larger cell-line panel revealed miR-215 to be most significantly correlated with CDX1 expression. Quantitative ChIP-PCR and promoter luciferase assays confirmed that CDX1 directly activates miR-215 transcription. miR-215 expression is depleted in FACS-enriched cancer stem cells compared with unsorted samples. Overexpression of miR-215 in poorly differentiated cell lines causes a decrease in clonogenicity, whereas miR-215 knockdown increases clonogenicity and impairs differentiation in CDX1-high cell lines. We identified the genome-wide targets of miR-215 and found that miR-215 mediates the repression of cell cycle and stemness genes downstream of CDX1. In particular, the miR-215 target gene BMI1 has been shown to promote stemness and self-renewal and to vary inversely with CDX1. Our work situates miR-215 as a link between CDX1 expression and BMI1 repression that governs differentiation in CRC.
关键词:miRNA ; miR-215 ; CDX1 ; cancer stem cells ; colorectal cancer