期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2015
卷号:112
期号:11
页码:3199-3204
DOI:10.1073/pnas.1423898112
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceCrystallization from solution is a materials synthesis process common both in nature and in the laboratory. Unlike conventional high-temperature solid-state synthesis, solution-based syntheses often yield metastable phases, contrary to expectations from equilibrium thermodynamics. Using a recently developed ab initio scheme to calculate the surface energy of a critical nucleus in equilibrium with the aqueous environment, we present a framework to compare relative nucleation rates between competing polymorphs as a function of solution chemistry. We apply this approach to demonstrate how seawater chemistry can preferentially bias nucleation toward the metastable aragonite phase of calcium carbonate, rather than the stable phase calcite--which is of great relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters of surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing "calcite-aragonite problem"--the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite--which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg-Ca ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. Our ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution.