首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
  • 本地全文:下载
  • 作者:Carlos Wert-Carvajal ; Rubén Sánchez-García ; José R Macías
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-89927-5
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer immunotherapy research. Novel sequential approaches through recurrent neural networks can improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant selection process can reduce operational requirements. We have developed a web server tool (NAP-CNB) for a full and automatic pipeline based on recurrent neural networks, to predict putative neoantigens from tumoral RNA sequencing reads. The developed software can estimate H-2 peptide ligands, with an AUC comparable or superior to state-of-the-art methods, directly from tumor samples. As a proof-of-concept, we used the B16 melanoma model to test the system’s predictive capabilities, and we report its putative neoantigens. NAP-CNB web server is freely available at http://biocomp.cnb.csic.es/NeoantigensApp/ with scripts and datasets accessible through the download section.
国家哲学社会科学文献中心版权所有