摘要:Potentially toxic element (PTE) pollution is a major abiotic stress, which reduces plant growth and affects food quality by entering the food chain, and ultimately poses hazards to human health. Currently, the use of slag in PTE-contaminated soils has been reported to reduce PTEs and toxicity in plants. This review highlights the role of slag used as a fertilizer for better crop production and sustainable agricultural development. The application of slag increased the growth, yield, and quality of crops under PTE toxicity. The mechanisms followed by slag are the immobilization of PTEs in the soil, enhancement of soil pH, changes in the redox state of PTEs, and positive changes in soil physicochemical and biological properties under PTE toxicity. Nevertheless, these processes are influenced by the plant species, growth conditions, imposition length of stress, and type of slag used. The current review provides an insight into improving plant tolerance to PTE toxicity by slag-based fertilizer application and highlights the theoretical basis for applying slag in PTE-contaminated environments worldwide.