摘要:In Mexico, atrazine is widely used in agriculture to control broadleaf weeds. The objective of this research was to compare atrazine removal in water and energy consumption between an up-flow cylinder electro-oxidation reactor (UCER) and an up-flow rectangular electro-oxidation reactor (URER) using the response surface methodology. In each reactor, two titanium (Ti) mesh electrodes (cathodes) and one Titanium-Lead Dioxide (Ti-PbO<sub>2</sub>) mesh electrode (anode). Current intensity effects, electrolysis treatment time, and recirculation flow were evaluated. Synthetic water with 5 mg/L atrazine content was used. Optimum atrazine removal values were obtained at 2 A electric current, 180 min of treatment time, and 200 mL/min recirculation rate for both reactors: in these conditions an atrazine removal of 77.45% and 76.89% for URER and UCER respectively. However, energy consumption showed a significant difference of 137.45 kWh/m<sup>3</sup> for URER and 73.63 kWh/m<sup>3</sup> for UCER. Regarding energy efficiency, a 60% atrazine removal was reached in both reactors using less energy for UCER at (1.5 A–135 min–150 mL/min–25.8 kWh/m<sup>3</sup>) and for URER at (0.66 A–135 min–150 mL/min–20.12 kWh/m<sup>3</sup>).