首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Spatial Heterogeneity and Complexity of the Impact of Extreme Climate on Vegetation in China
  • 本地全文:下载
  • 作者:Shuang Li ; Feili Wei ; Zheng Wang
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2021
  • 卷号:13
  • 期号:10
  • 页码:5748
  • DOI:10.3390/su13105748
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:The impact of extreme climate on natural ecosystems and socioeconomic systems is more serious than that of the climate’s mean state. Based on the data of 1698 meteorological stations in China from 2001 to 2018, this study calculated the 27 extreme climate indices of the Expert Team on Climate Change Detection and Indices (ETCCDI). Through correlation analysis and collinearity diagnostics, we selected two representative extreme temperature indices and three extreme precipitation indices. The spatial scale of the impact of extreme climate on Normalized Difference Vegetation Index (NDVI) in China during the growing season from 2001 to 2018 was quantitatively analyzed, and the complexity of the dominant factors in different regions was discussed via clustering analysis. The research results show that extreme climate indices have a scale effect on vegetation. There are spatial heterogeneities in the impacts of different extreme climate indices on vegetation, and these impacts varied between the local, regional and national scales. The relationship between the maximum length of a dry spell (CDD) and NDVI was the most spatially nonstationary, and mostly occurred on the local scale, while the effect of annual total precipitation when the daily precipitation amount was more than the 95th percentile (R95pTOT) showed the greatest spatial stability, and mainly manifested at the national scale. Under the current extreme climate conditions, extreme precipitation promotes vegetation growth, while the influence of extreme temperature is more complicated. As regards intensity and range, the impact of extreme climate on NDVI in China over the past 18 years can be categorized into five types: the humidity-promoting type, the cold-promoting and drought-inhibiting compound type, the drought-inhibiting type, the heat-promoting and drought-inhibiting compound type, and the heat-promoting and humidity-promoting compound type. Drought is the greatest threat to vegetation associated with extreme climate in China.
国家哲学社会科学文献中心版权所有