摘要:Load forecasting (LF) has become the main concern in decentralized power generation systems with the smart grid revolution in the 21st century. As an intriguing research topic, it facilitates generation systems by providing essential information for load scheduling, demand-side integration, and energy market pricing and reducing cost. An intelligent LF model of residential loads using a novel machine learning (ML)-based approach, achieved by assembling an integration strategy model in a smart grid context, is proposed. The proposed model improves the LF by optimizing the mean absolute percentage error (MAPE). The time-series-based autoregression schemes were carried out to collect historical data and set the objective functions of the proposed model. An algorithm consisting of seven different autoregression models was also developed and validated through a feedforward adaptive-network-based fuzzy inference system (ANFIS) model, based on the ML approach. Moreover, a binary genetic algorithm (BGA) was deployed for the best feature selection, and the best fitness score of the features was obtained with principal component analysis (PCA). A unique decision integration strategy is presented that led to a remarkably improved transformation in reducing MAPE. The model was tested using a one-year Pakistan Residential Electricity Consumption (PRECON) dataset, and the attained results verify that the proposed model obtained the best feature selection and achieved very promising values of MAPE of 1.70%, 1.77%, 1.80%, and 1.67% for summer, fall, winter, and spring seasons, respectively. The overall improvement percentage is 17%, which represents a substantial increase for small-scale decentralized generation units.