摘要:Polyphenols are chemical compounds of the secondary plant metabolism. High concentrations can be found in various fruits including apples, berries and grapes. Polyphenols are associated with numerous health beneficial effects including a reduced risk for cardiovascular disease or diabetes. The human body cannot synthesize or store polyphenols and relies on continuous replenishment by daily diet. Unfortunately, knowledge on absorption, metabolization and excretion is still limited. The aim of this study was to determine the pharmacokinetic fate of apple polyphenols in young healthy adults. Volunteers consumed 500 mL of an unfiltered apple juice. Blood and urine samples were collected within a time period of ten hours and analyzed for their total phenolic content, concentration of selected individual polyphenolic compounds and antioxidant capacity. Large differences in apple polyphenol pharmacokinetics between single subjects were observed. Those could be divided into subgroups according to fast or slow rates of polyphenol metabolism. Some subjects showed no detectable metabolism within the study time frame at all. An increase in the total phenolic content over time did not correlate with an observed, highly elevated antioxidant capacity (AOC) in the blood plasma after apple juice consumption. The determined increase of the AOC was rather a result of a high fructose content of the apple juice. No differences in renal excretion were detected between female and male subjects. However, relative concentrations were slightly higher in male subjects. Apple derived polyphenols can be readily detected in human blood and urine after juice consumption. The existence of sub-populations with different pharmacokinetics suggests significant variations in the individual metabolism rates of polyphenolic substances with implications on bioavailability and potential health effects within the body. O2413 (Ethics Commissions of Upper Austria) and 415-EP/73/233-2013 Salzburg (Ethics Commissions of Salzburg).
关键词:Apple juice ; Polyphenolics ; Pharmacokinetics ; Antioxidant capacity