首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Calculating non-centrality parameter for power analysis under structural equation modelling: An alternative
  • 本地全文:下载
  • 作者:David Adedia ; Atinuke O. Adebanji ; Simon K. Appiah
  • 期刊名称:Pakistan Journal of Statistics and Operation Research
  • 印刷版ISSN:2220-5810
  • 出版年度:2021
  • 卷号:17
  • 期号:1
  • 页码:273-289
  • DOI:10.18187/pjsor.v17i1.3148
  • 语种:English
  • 出版社:College of Statistical and Actuarial Sciences
  • 摘要:Identifying the most parsimonious model in structural equation modelling is of utmost importance and the appropriate power estimation methods minimize the probabilities of Type I and Type II errors. The power of a test depends on the sample size, Type I error, degrees of freedom and effect size. In this study, a modified approach of using effect size in calculating the non-centrality parameter for power is proposed. This is compared to the approach in Maccallum et al. (1996) at different degrees of freedom and sample size specifications --- taken from 50 to 2000. As the sample size increased the difference between the power of a test for both methods reduced to zero. The results showed that the values for power of a test are the same for the modified and original approaches for large sample sizes and degrees of freedom. The findings also revealed that the sample discrepancy function ($\hat{F}$) is asymptotically unbiased.
  • 关键词:Structural equation modelling; Effect size; Root mean square error approximation; Non-centrality parameter; Power analysis
国家哲学社会科学文献中心版权所有