首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Research on Defect Recognition of Lithium Battery Pole Piece Based on Deep Learning
  • 本地全文:下载
  • 作者:Jiwei Li ; Linsheng Li ; Changlu Xu
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:261
  • 页码:1-5
  • DOI:10.1051/e3sconf/202126101021
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:In the field of defect recognition, deep learning technology has the advantages of strong generalization and high accuracy compared with mainstream machine learning technology. This paper proposes a deep learning network model, which first processes the self-made 3, 600 data sets, and then sends them to the built convolutional neural network model for training. The final result can effectively identify the three defects of lithium battery pole pieces. The accuracy rate is 92%. Compared with the structure of the AlexNet model, the model proposed in this paper has higher accuracy.
国家哲学社会科学文献中心版权所有