首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Feature extraction and gait classification in hip replacement patients on the basis of kinematic waveform data
  • 本地全文:下载
  • 作者:Carlo Dindorf ; Wolfgang Teufl ; Bertram Taetz
  • 期刊名称:Biomedical Human Kinetics
  • 电子版ISSN:2080-2234
  • 出版年度:2021
  • 卷号:13
  • 期号:1
  • 页码:177-186
  • DOI:10.2478/bhk-2021-0022
  • 语种:English
  • 出版社:Walter de Gruyter GmbH
  • 摘要:tudy aim:To find out, without relying on gait-specific assumptions or prior knowledge, which parameters are most important for the description of asymmetrical gait in patients after total hip arthroplasty (THA).Material and methods:The gait of 22 patients after THA was recorded using an optical motion capture system. The waveform data of the marker positions, velocities, and accelerations, as well as joint and segment angles, were used as initial features. The random forest (RF) and minimum-redundancy maximum-relevance (mRMR) algorithms were chosen for feature selection. The results were compared with those obtained from the use of different dimensionality reduction methods.Results:Hip movement in the sagittal plane, knee kinematics in the frontal and sagittal planes, marker position data of the anterior and posterior superior iliac spine, and acceleration data for markers placed at the proximal end of the fibula are highly important for classification (accuracy: 91.09%). With feature selection, better results were obtained compared to dimensionality reduction.Conclusion:The proposed approaches can be used to identify and individually address abnormal gait patterns during the rehabilitation process via waveform data. The results indicate that position and acceleration data also provide significant information for this task.
国家哲学社会科学文献中心版权所有