首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:ブースティングによる機械学習に基づく海底物体の検出
  • 本地全文:下载
  • 作者:丹 康弘 ; タン ジュークイ ; 金 亨燮
  • 期刊名称:日本船舶海洋工学会論文集
  • 印刷版ISSN:1880-3717
  • 电子版ISSN:1881-1760
  • 出版年度:2013
  • 卷号:18
  • 页码:115-121
  • DOI:10.2534/jjasnaoe.18.115
  • 语种:Japanese
  • 出版社:社団法人 日本船舶海洋工学会
  • 摘要:Side-scan and forward looking sonars are some of the most widely used imaging systems for obtaining large scale images of a seafloor, and their use continues to expand rapidly with their increasing deployment on Autonomous Underwater Vehicles. However,it is difficult to extract quantitative information from the images generated from these processes, in particular, for the detection and extraction of information on the objects within these images. We propose in this paper an algorithm for automatic detection of underwater objects in side-scan images based on machine learning employing adaptive boosting. Experimental results show that the method produces consistent maps of a seafloor.
国家哲学社会科学文献中心版权所有